skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jones, Edna"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We develop a version of the Kloosterman circle method with a bump function that is used to provide asymptotics for weighted representation numbers of nonsingular integral quadratic forms. Unlike many applications of the Kloosterman circle method, we explicitly state some constants in the error terms that depend on the quadratic form. This version of the Kloosterman circle method uses Gauss sums, Kloosterman sums, Salié sums, and a principle of nonstationary phase. We briefly discuss a potential application of this version of the Kloosterman circle method to a proof of a strong asymptotic local–global principle for certain Kleinian sphere packings. 
    more » « less
  2. Abstract We compute moments of L-functions associated to the polynomial family of Artin–Schreier covers over $$\mathbb{F}_q$$, where q is a power of a prime p > 2, when the size of the finite field is fixed and the genus of the family goes to infinity. More specifically, we compute the $$k{\text{th}}$$ moment for a large range of values of k, depending on the sizes of p and q. We also compute the second moment in absolute value of the polynomial family, obtaining an exact formula with a lower order term, and confirming the unitary symmetry type of the family. 
    more » « less